

Bedienungsanleitung Software L-LAS-TB-2X-Scope V1.0

(PC-Software für Microsoft® Windows 10, Windows 7)

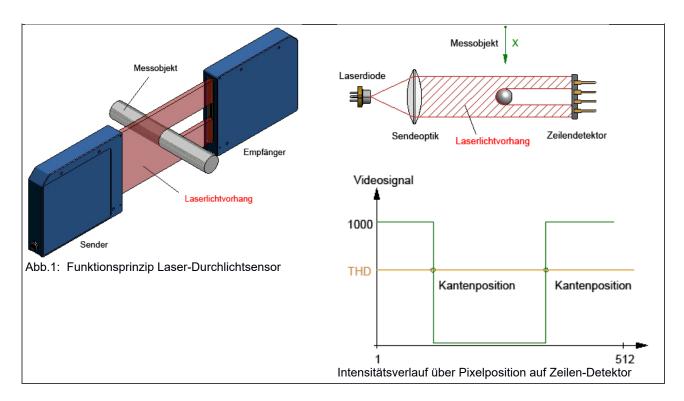
für Dual Laser Zeilensensoren der L-LAS-TB-2X-...-AL Serie

Sonderbauform:

L-LAS-TB-F-1X6-228/115-2X-18-AL

0 Inhalt

0	INHAI	_T	2
1		TIONSPRINZIP: L-LAS-TBAL ZEILENSENSOREN	3
	1.1	Technische Beschreibung	3
2	INSTA	ALLATION DER <i>L-LAS-TB-2X-SCOPE</i> SOFTWARE	4
3	FUNK	TIONSELEMENTE DER <i>L-LAS-TB-2X-SCOPE</i> SOFTWARE	5
-	3.1	Kurzbeschreibung der L-LAS-TB-2X-Scope Bedienoberfläche:	
	3.2	Allgemeine Funktionselemente der L-LAS-TB-2X-Scope Software:	
	3.3	CHO, CH1 Register-Karte:	
	3.4	ALLGEMEINE PARAMETER GEN Register-Karte:	
	3.5	LERNWERT-EINSTELLUNGEN Register-Karte:	15
	3.6	KALIBRIERUNGS-EINSTELLUNGEN Register-Karte:	19
	3.7	VERBINDUNG Register-Karte:	20
	3.9.1	Datentransfer über den externen RS232 Ethernet Adapter:	22
4	ARBE	IT MIT DER <i>L-LAS-TB-2X-SCOPE</i> SOFTWARE	23
	4.1	Hilfsmittel zur Justierung, Numerische und Graphische Anzeigeelemente	23
	4.2	Einlernen der Referenz-Position	24
	4.3	Arbeit mit der nachgeführten Video-Schwelle	
5	ANHA	NG	26
	5.1	Anzeige-Elemente	
	5.2	Laserwarnhinweis	
	5.3	Funktionsweise des Digitaleingangs IN0	27
	5.3	Funktionsweise des Digitaleingangs IN1	28
	5.4	Abmessungen	29
	5.5	Anschlussbuchsen	
	5.6	RS232 Schnittstellenprotokoll	31
	5.6.1	Parameter set format	
	5.6.2	RS232 data transfer examples	34

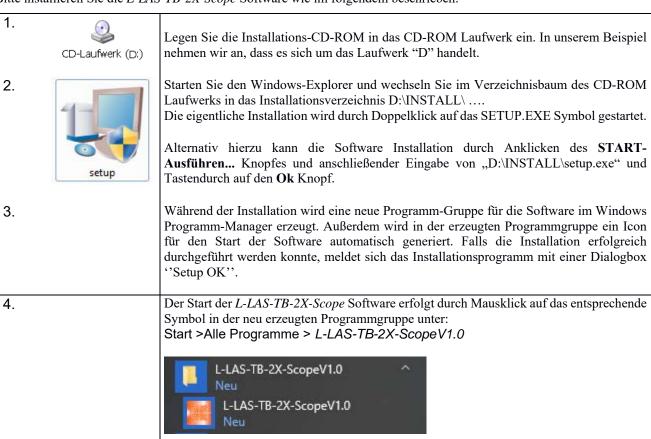


1 Funktionsprinzip: L-LAS-TB-...-AL Zeilensensoren

1.1 Technische Beschreibung

Bei den Laser-Zeilensensoren der *L-LAS-TB-...-AL Serie* tritt der Laserstrahl einer Laserdiode (λ=670nm, 0,4mW Ausgangs-leistung, Laserklasse 1) über geeignete Kollimatoren und Blenden als parallel gerichtetes Laserlicht mit homogener Lichtverteilung als Laserlinie aus der Sendeoptik aus. In der Empfangsoptik trifft die Laserlinie auf einen CMOS-Zeilen-Empfänger. Die CMOS-Zeile besteht aus vielen, sehr eng benachbarten, zu einer Linie angeordneten, einzelnen Empfangselementen (Pixel). Die während der Integrationszeit gesammelte Lichtmenge jedes dieser Empfangselemente wir als Analogspannung (Videosignal) separat ausgelesen und nach erfolgter Analog-Digital-Wandlung als Digitalwert in einem Datenfeld gespeichert.

Befindet sich ein nichttransparentes Messobjekt in der Laserlinie, so werden durch das parallel gerichtete Laserlicht nur die Empfangselemente (Pixel) der Zeile beleuchtet, die außerhalb der Schattenzone des Messobjektes liegen. Dies führt dazu, dass die Pixel innerhalb der Schattenzone eine wesentlich kleinere Analogspannung abgeben im Vergleich zu den beleuchteten Pixel (vgl. Abb. 1). Durch geeignete Software-Algorithmen können die Bereiche der Schattenzonen aus dem zuvor gespeicherten Datenfeld ermittelt werden. Da der Abstand der Pixel des Zeilendetektors bekannt ist, kann somit die Größe und Position des Messobjektes ermittelt werden. Der Mikrocontroller des *L-LAS-TB-...-AL Sensors* kann mit Hilfe einer Windows PC-Software über die serielle RS232 Schnittstelle parametrisiert werden. Es können verschiedene Auswerte- Betriebsarten eingestellt werden. Die Visualisierung der Schaltzustände erfolgt über vier LEDs (1x grün, 1x gelb und 2x rot), die am Gehäuse des *L-LAS-TB-...-AL Sensors* integriert sind. Die *L-LAS-TB-...-AL Kontrollelektronik* besitzt drei Digital-Ausgänge (OUT0, OUT1, OUT2), deren Ausgangspolarität per Software einstellbar ist. Über zwei Digital-Eingänge (IN0, IN1) kann die externe TEACH/RESET Funktionalität und eine externe TRIGGER Funktionalität per SPS vorgegeben werden. Ferner wird ein schneller Analogausgang (0 ... 10V) mit 12-Bit Digital/Analog-Auflösung bereitgestellt.



2 Installation der *L-LAS-TB-2X-Scope* Software

Folgende Hardware Voraussetzungen sind für eine erfolgreiche Installation der *L-LAS-TB-2X-Scope* Software erforderlich:

- 1GHz Pentium-kompatibler Prozessor oder besser.
- CD-ROM oder DVD-ROM Laufwerk
- Ca. 200 MByte freier Festplattenspeicher
- SVGA-Grafikkarte mit mindestens 1024x768 Pixel Auflösung und 256 Farben oder besser.
- Windows® 7, Windows® 8 oder Windows® 10 Betriebssystem
- Freie serielle RS232-Schnittstelle oder USB-Port mit USB-RS/232-Adapter am PC

Bitte installieren Sie die *L-LAS-TB-2X-Scope* Software wie im folgendem beschrieben:

Deinstallation der *L-LAS-TB-2X-Scope* Software:

Programme und Funktionen	Die Deinstallation wird mit Hilfe des Windows®-Deinstallations- Tools aus der Systemsteuerung durchgeführt. Das Windows®-Deinstallations-Programm finden Sie im Ordner
	Start/Einstellungen/Systemsteuerung.

3 Funktionselemente der *L-LAS-TB-2X-Scope* Software

3.1 Kurzbeschreibung der *L-LAS-TB-2X-Scope* Bedienoberfläche:

Die *L-LAS-TB-2X-Scope Bedienoberfläche* bietet viele Funktionen:

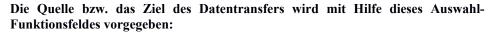
- Visualisierung der Messdaten in numerischen und graphischen Ausgabefeldern.
- Einstellen der Beleuchtungsquelle.
- Einstellung der Polarität der digitalen Schaltausgänge OUT0, OUT1.
- Auswahl eines geeigneten Auswerte-Modus.
- Vorgabe von Sollwert und Toleranzbandgröße.
- Abspeichern der Parameter in den RAM, EEPROM Speicher an der Kontrollelektronik oder in ein Konfigurationsfile auf der Festplatte des PC.
- 1 Funktions-Felder zum Senden / Lesen der Einstellungs-Parameter (Parameter-Transfer).
- 2 START / STOP Funktions-Feld für den RS232 Datenaustausch zum Sensor.
- Anzeige des aktuellen Betriebszustandes am Sensor. (Auswertemodus, Ausgangspolarität, ...)
- 4 Tabulator Reihe zum Umschalten zwischen den verschiedenen Tabulator-Grafik-Fenster.
- 5 Grafik-Ausgabe (Anzeige des zeitlichen Messwerteverlaufs mit Lernwert und Toleranzband)
- 6 Numerische Anzeigeelemente (Messwert in [mm], Kanten-Anzahl, Programm-Nummer, ...)

Im Folgenden werden die einzelnen Bedienelemente der *L-LAS-TB-2X-Scope* Software beschrieben. Eine Kurz-Hilfe wird durch Drücken der rechten Maus-Taste auf das jeweilige Funktionselement angezeigt.

3.2 Allgemeine Funktionselemente der *L-LAS-TB-2X-Scope* Software:

PARAMETER TRANSFER:

Diese Gruppe von Funktionselementen dient zum Parameter-Transfer zwischen dem PC und der *L-LAS-TB-...-AL Kontrollelektronik* über die serielle RS232 Schnittstelle.


SENDE:

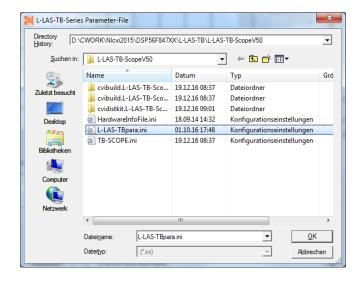
Nach Anklicken der SENDE Taste werden die aktuell an der Bedienoberfläche eingestellten Parameter zur *L-LAS-TB-...-AL Kontrollelektronik* übertragen.

HOLE:

Nach Anklicken der HOLE-Taste werden die Einstell-Parameter von der *L-LAS-TB-...-AL Kontrollelektronik* zum PC übertragen und an der Bedienoberfläche aktualisiert.

RAM:

Die Aktuell eingestellten Parameter werden in den flüchtigen RAM-Speicher der *L-LAS-TB-...-AL Kontrollelektronik* geschrieben oder sie werden von dort gelesen.


EEPROM:

Die aktuell eingestellten Parameter werden in den nichtflüchtigen EEPROM-Speicher der *L-LAS-TB-...-AL Kontrollelektronik* geschrieben oder sie werden von dort gelesen. Im EEPROM abgespeicherte Parameter gehen auch nach Trennung der Spannungsversorgung nicht verloren.

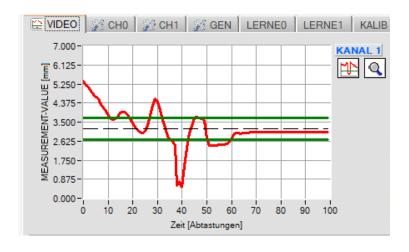
FILE:

Falls das FILE Bedienfeld angewählt ist, bewirkt ein Tastendruck auf die SENDE/HOLE Taste, dass ein Dialogfenster für den Datenaustausch an der Bedienoberfläche geöffnet wird. Die aktuellen Parameter können in eine frei wählbare Datei auf die Festplatte des PC geschrieben werden oder von dort gelesen werden.

FILE-Dialog Fenster:

Die Standard-Ausgabedatei für die Parameter-Werte hat den Dateinamen "L-LAS-TBpara.ini".

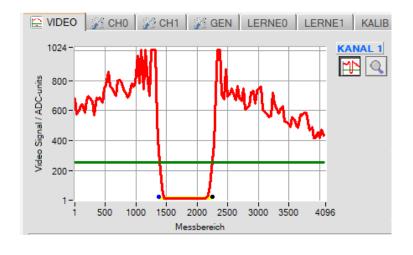
Die Ausgabedatei mit der Dateiendung *.ini kann mit dem Standard *Windows*® *Text-Editor* Programm "EDITOR" geöffnet werden.



START - STOP Taste:

Der Datentransfer über die Serielle RS232 Schnittstelle wird durch Anklicken dieser beiden Tasten gesteuert.

Graphische Datenausgabe: ROLL-Fenster:



Falls die Register-Karte [VIDEO] angewählt ist, wird der aktuelle zeitliche Messwerte-Verlauf oder das Video-Signal des Zeilensensors übertragen für beide Messkanäle Kanal 0 und Kanal 1 übertragen.

Zeitlicher Messwerte-Verlauf:

Y-Achse: Aktueller Abstandswert [mm] X-Achse: Zeit-Achse [Abtastungen]

Graphische Datenausgabe: VIDEO-Fenster:

Nach Anklicken der Video Taste wird das Videobild vom Zeilensensor übertragen.

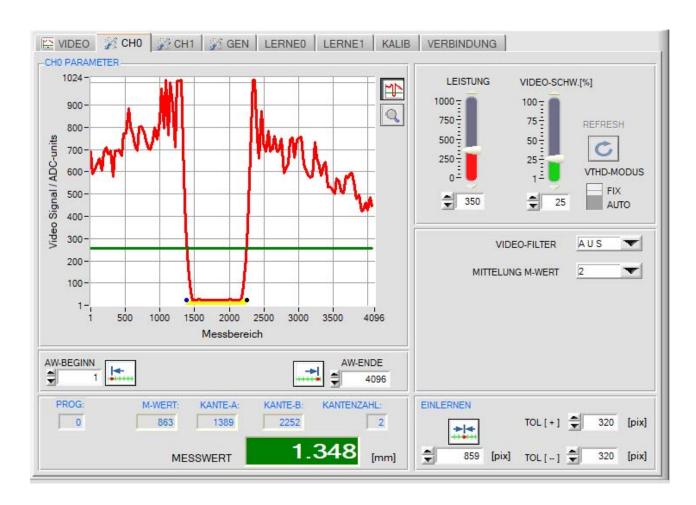
Intensitätsverlauf auf Zeilensensor:

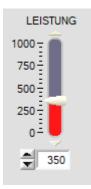
Y-Achse: Amplitude am jeweiligen Pixel X-Achse: Pixel/Messbereich des Zeilensensors


Das nebenstehende Bild zeigt ein typisches Abbild einer Video-Antwort des Zeilensensors. Falls sich ein Objekt zwischen Sender und Empfänger befindet, wird dies als Schattenbereich (niedrigere Intensität) erkennbar. Zur Messwert-Ermittlung wird der Intensitätsverlauf zusammen mit der Komparator-Schwelle ausgewertet.

Numerische Anzeigefelder:

Neben den graphischen Anzeigefenstern werden nach Anklicken der Start-Taste [>] verschiedene numerische Anzeigen aktualisiert.

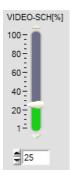

Messwert Ausgabe in [mm] Anzeige der oberen und unteren Toleranzband-Breite in [mm].

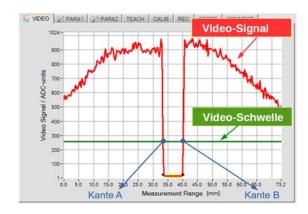


3.3 CH0, CH1 Register-Karte:

CH0, CH1 Registerkarte:

Nach Anklicken der CH0 oder CH1 Register-Karte öffnet sich auf der Bedienoberfläche das zugehörige PARAMETER Fenster. Hier können verschiedene Einstellungen wie Anpassung der Laserleistung, Belichtungszeit, Einstellen der Videoschwelle usw. für den jeweiligen Messkanal durchgeführt werden.





LEISTUNG:

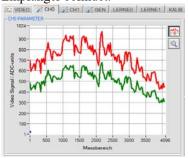
In diesem Funktionsfeld kann mit Hilfe der Pfeiltasten, Schieberegler oder durch Zahlenwerteingabe in das entsprechende Eingabefeld die Sendeleistung an der Laser Sendeeinheit am *L-LAS-TB-...-AL Sensor* eingestellt werden.

VIDEO SCHWELLE[%]:

Mit Hilfe der Videoschwelle (grün) können aus dem Intensitätsverlauf des Video-Signals (rot) die Kanten (=Hell/Dunkelübergänge) abgeleitet werden.

Hierzu werden die Schnittpunkte zwischen der Video-Schwelle und dem Video-Signal berechnet. Der x-Wert des Schnittpunktes ist einem Pixel auf dem Zeilenempfänger zugeordnet. Aus dieser Information und den bekannten Pixel-Abständen kann der Messwert errechnet werden.

VIDEO-MODUS:


Umschalter zur Auswahl der Betriebsart der Videoschelle: FIX: Feste Video-Schwelle (horizontale Linie).

AUTO: Nachgeführte Video-Schwelle (bei Teiltransparenten Objekten).

AKTUALISIERE:

Software Taste zur Aktualisierung der Nachgeführten Video-Schwelle. Nach Anklicken dieser Taste wird die Nachgeführte Video-Schwelle unterhalb des aktuellen Video-Intensitäts-Verlaufes neu berechnet. Zur Berechnung wird der am VIDEO-SCH[%] Schieberegler eingestellte Wert herangezogen (z.B. 70%). Vor der Aktualisierung der Video-Schwelle muss sichergestellt werden, dass sich kein Objekt zwischen Sender und Empfänger befindet.

VIDEO FILTER:

In diesem Listen-Funktions-Feld kann eine Glättung des Video-Signals eingestellt werden. Der Intensitätsverlauf des Video-Signals wird einer "Gleitenden Mittelwert-Berechnung" vor der Kantensuche unterzogen. Dies kann zur Unterdrückung von Störsignalen am Video-Signal hilfreich sein. Die Größe des Ringspeichers kann zwischen AVG=2 und AVG=16 eingestellt werden.

MITTELWERT:

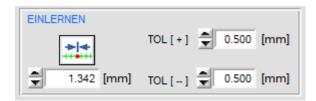
In diesem Funktionsfeld kann durch Anklicken des Listen-Eingabefeldes mit der Maus eine Mittelwertbildung der Messwerte am *L-LAS-TB-...-AL Sensor* aktiviert werden. Mit jedem Hauptprogrammdurchlauf wird der aktuelle Messwert in ein Ringspeicherfeld abgelegt und anschließend hieraus der Mittelwert der im Ringspeicherfeld befindlichen Werte berechnet.

Der Mittelwert des Ringspeicherfeldes wird als Messwert MEASUREMENT_VALUE herangezogen. Die Größe des Ringspeichers kann mit dem AVERAGE Wert von 1 bis 1024 eingestellt werden. Der nach der Mittelwertbildung ermittelte Messwert wird am Analogausgang Pin8/rot/ausgegeben.

Durch die Mittelwertbildung wird die Schaltfrequenz am *L-LAS-TB-...-AL* Sensor um den Faktor 1/AVERAGE reduziert.

Die aktuelle Schaltfrequenz wird in einem numerischen Anzeigeelement ausgegeben.

Durch Zahlenwerteingabe in das numerische Eingabefeld kann der Auswerte-Beginn oder in [mm] oder [Pixel] vorgegeben werden. Durch Anklicken der Funktionstaste wird der Auswerte-Beginn auf den Messbereichs-Anfang (MBA) gesetzt.



0.0

AW-BEGINN

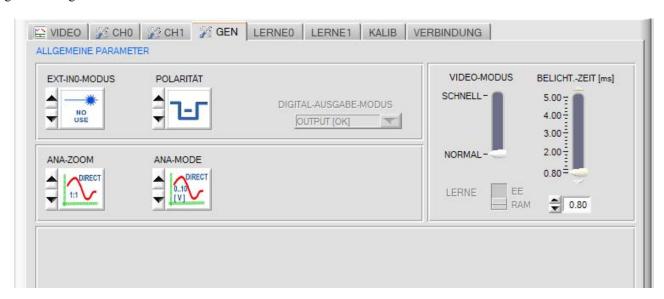
AUSW.-ENDE:

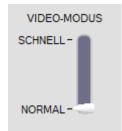
Durch Zahlenwerteingabe in das numerische Eingabefeld kann das Auswerte-Ende in [mm] oder [pixel] vorgegeben werden. Durch Anklicken der Funktionstaste wird das Auswerte-Ende auf das Messbereichs-Ende (MBE) gesetzt.

EINLERNEN:

Durch Anklicken der Software Taste oder durch Zahlenwert Eingabe in das TEACH-IN Eingabefeld kann ein Referenzwert am Sensor vorgegeben werden.

Nach Anklicken der TEACH-IN Taste wird die Lernprozedur am Sensor ausgelöst. Hierbei wird die aktuell ausgewählte Kante als Lernposition herangezogen.

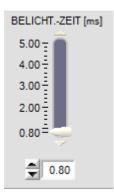

Die Größe des Toleranzbandes kann in den entsprechenden Vorgabefeldern TOL[+] und TOL[-] voreingestellt werden.



3.4 ALLGEMEINE PARAMETER GEN Register-Karte:

GEN Registerkarte:

Nach Anklicken der GEN Register-Karte öffnet sich auf der Bedienoberfläche das zugehörige ALLGEMEINE PARAMETER Fenster. Hier können verschiedene Einstellungen gemacht werden, die für beide Auswerte-Kanäle gemeinsam gelten.


VIDEO MODUS:

Umschalter zur Vorgabe der Auslesegeschwindigkeit am Zeilensensor-Empfänger. Die Erhöhung der Auslesegeschwindigkeit reduziert die Auflösung am Sensor:

NORMAL: Normale Auslesefrequenz

SCHNELL: Schnelle Auslesefrequenz

halbe Auflösung
halbe Auflösung

BELICHTUNGS-ZEIT[ms]:

In diesem Funktionsfeld kann mit Hilfe der Pfeiltasten, Schieberegler oder durch Zahlenwerteingabe in das entsprechende Eingabefeld die Belichtungszeit am *L-LAS-TB-...-AL Sensor* eingestellt werden.

Bei besonders dunklen oder matten Oberflächen kann die Erhöhung der Belichtungszeit dazu beitragen, dass wieder genügend Intensität an der Empfänger-Zeile auftrifft. Die Vergrößerung der Belichtungszeit reduziert die Scanfrequenz des Sensors. (z.B. 2ms=500Hz, 10ms=100Hz).

Einstellen der Polarität an den Digitalausgängen OUT0 und OUT1.

[+] <u>DIRECT:</u> Im Fehlerfall liegt der Digitalausgang auf +Ub (+24VDC),

die LED zur Anzeige des Digital-Ausgangszustandes leuchtet rot.

[-] <u>INVERSE:</u> Im Fehlerfall liegt der Digitalausgang auf GND (0V),

die LED zur Anzeige des Digital-Ausgangszustandes leuchtet rot.

EXT-INO MODUS:

Listenelement zur Einstellung des Trigger-Modus am Digitaleingang IN0/pin3/grün.

NO-USE: Keine Triggerung aktiv, die Kontrollelektronik arbeitet kontinuierlich.

TRIGG-IN0 L/H:

Externe flankengesteuerte Triggerung der Messwertauswertung über den Digitaleingang IN0/Pin3/grün. Mit jeder neuen Low/High Flanke wird ein neuer Messwert generiert.

TRIGG-IN0 HIGH:

Externe Triggerung der Messwertauswertung über einen High-Pegel (+Ub) am Digitaleingang IN0/Pin3/grün.

Solange der Digitaleingang IN0=HIGH Pegel aufweist werden neue Messwerte generiert.

PROG2:

Der Externe Digitaleingang IN0 dient zur Auswahl des Messprogramms.

IN0=LOW: Programm 0 aktiv; IN0=HIGH: Programm 1 aktiv

PROG4:

Beide Digitaleingänge IN0 und IN1 werden zur Auswahl des Messprogramms verwendet.

IN0=LOW, IN1=LOW: Programm0, IN0=HIGH, IN1=LOW: Programm1 IN0=LOW, IN1=HIGH: Programm2 IN0=HIGH, IN1=HIGH: Programm3

LASER ON - INO HI

Aktivierung der Laser-Sendereinheit durch einen HIGH-Pegel an INO/Pin3/grün.

ANA-ZOOM:

Listenelement zur Einstellung des Zoom-Modus am jeweiligen (4...20mA) Analogausgang ANA0 /Pin7/ und ANA1 /Pin8/.

DIRECT 1:1:

Am Analogausgang wird der gesamte Messbereich des Sensors als 4 ... 20mA Ausgangsstrom ausgegeben.

ZOOM

ZOOM X1, ZOOM X2 ... ZOOM X16:

Am Analogausgang wird die Differenz zwischen dem aktuellen Messwert (Pixel) und der Lernposition (TEACH-Wert in Pixel) ausgegeben. An der Lernposition wird am Analogausgang 12mA ausgegeben. Ist der aktuelle Messwert kleiner als die Lernposition, so wird ein Strom < 12mA ausgegeben, ist der aktuelle Messwert größer als der Lernwert, so wird ein Strom > 12mA ausgegeben. Die Abweichung von der 12mA Lernposition kann mit einem Zoom-Faktor von X2 bis X16 verstärkt werden.

TOL-WIN

TOL-WIN <10V-range>:

Am Analogausgang wird der gesamte Ausgabebereich (4..20mA) über das aktuelle Toleranz-Fenster ausgegeben. An der Lernposition werden 12mA ausgegeben, an der unteren Toleranzgrenze liegen 4mA am Analogausgang an, an der oberen Toleranzgrenze liegen 20mA an.

ANA-MODUS:

Funktionselement zur Auswahl des Ausgabemodus am Analogausgang (4..20mA) der *L-LAS-TB-...-AL Sensor* (KANALO ANAO-Pin7/ und KANAL1 ANA1-Pin8 8-pol. SPS/POWER-Buchse). Der Stromausgang wird mit einer Auflösung von 12-Bit im Bereich von 4 ... 20mA ausgegeben.

DIRECT:

Am Analogausgang wird ein dem aktuellen Messwert proportionaler Ausgangsstrom (4 ... 20mA) ausgegeben.

MAXIMA:

Am Analogausgang wird der aktuelle Maximalwert ausgegeben (Schleppzeigerprinzip, Zurücksetzen durch Eingang IN1/Pin4/gelb Puls von <750ms Dauer oder durch Tastendruck am TEACH/RESET-Taster).

MINIMA:

Am Analogausgang wird der aktuelle Minimalwert ausgegeben (Schleppzeigerprinzip, Zurücksetzen durch Eingang IN1/Pin4/gelb Puls von <750ms Dauer oder durch Tastendruck am TEACH/RESET-Taster).

MAX-MIN:

Am Analogausgang wird die aktuelle Differenz zwischen Maximalwert und Minimalwert ausgegeben (Schleppzeigerprinzip, Zurücksetzen durch Eingang IN1/Pin4/gelb Puls von <750ms Dauer oder durch Tastendruck am TEACH/RESET-Taster).

3.5 LERNWERT-EINSTELLUNGEN Register-Karte:

LERNE0, LERNE1 Registerkarte:

Nach Anklicken des [LERNE] Reiters öffnet sich ein Fenster zur Anzeige und Vorgabe der Lernwerte am Sensor. In diesem Reiter können mit Hilfe der Lerntabelle und weiterer Funktionselemente die Lernwerte an der *L-LAS Kontrollelektronik* für jeden Messkanal separat voreingestellt werden.

LERN-TABELLE:

Die Lerntabelle dient zur Visualisierung und Vorgabe der Lernwerte und Toleranzbereiche von vier unterschiedlichen Programmen (0-3). Jedes einzelne Programm entspricht einer Zeile in der Lerntabelle. Je nach eingestellter Schalterstellung werden die Lernwerte und Toleranzen in [mm] oder [Pixel] angezeigt.

	Α	В	SDIR		EVALMOD	Е	TEACH	TOL[+]	TOL[-]	CNT	EDG_A	EDG_B
0	0	0	LEFT	Ŧ	DISTANCE	Ŧ	1.364	0.500	0.500	2	1462	2335
1	0	0	LEFT	Ŧ	POSITION	Ŧ	3.200	0.500	0.500	2	2048	2048
2	-1	1	LEFT	¥	CENTER	Ŧ	2.967	0.500	0.500	2	1463	2336
3	0	0	LEFT	Ŧ	POSITION	Ŧ	3.200	0.500	0.500	2	2048	2048

Bedeutung der Spalten:

Spalte1: PROG (Programm-Nummer 0,1,2 oder 3)

Spalte2: KANTE A (Erste Kante die zur Auswertung herangezogen werden soll).

Spalte3: KANTE B (Zweite Kante die zur Auswertung herangezogen werden soll).

Spalte4: SEARCH-DIR (Kanten Suchrichtung LEFT(von Pixel1 ausgehend) oder RIGHT).

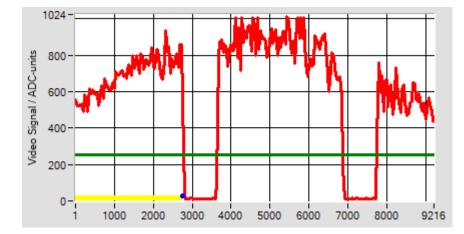
Spalte5: EVALMODE (Auswertemodus zwischen den Kanten A und B - Position, Distanz oder Zentrum).

Spalte6: TEACH (Lernwert in [mm] oder [Pixel]).

Spalte7: TOL[-] (untere Toleranz in [mm] oder [Pixel]).
Spalte8: TOL[+] (obere Toleranz in [mm] oder [Pixel]).

Spalte9: CNT (Kanten-Anzahl).

Spalte10: EDG_A (Kantenposition - erste auszuwertende Kante in [Pixel]).
Spalte11: EDG_B (Kantenposition - zweite auszuwertende Kante in [Pixel]).


Bei der Mehrkantenauswertung können für jedes Programm maximal 16 positive (ansteigende) Kanten und 16 negative (abfallende) Kanten unterschieden werden. Zur eigentlichen Auswertung müssen stets zwei Kanten (A, B) ausgewählt werden.

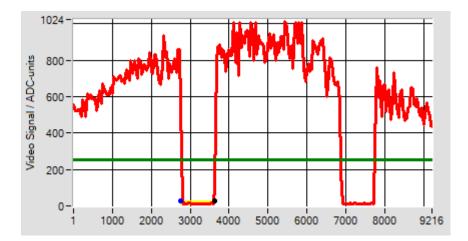
BEISPIELE ZUR MULTI-KANTEN-AUSWERTUNG:

	Α	В	EVALMODE	-	TEACH	TOL[+]	TOL[-]	CNT	EDG_A	EDG_B
0	0	0	POSITION	Ŧ	2768	503	503	4	2768	2768
1	1	1	DISTANCE	4	874	503	503	4	2768	3642
2	1	-2	CENTER	4	5259	503	503	4	3640	6880
3	-1	2	DISTANCE	¥	4976	503	503	4	2768	7744

PROG=0: POSITION der ersten äußeren Kante

Eingelernt und ausgewertet wird die Position der äußersten Kante (A=0), beginnend mit der Suchrichtung von Links bei Pixel 1.

Falls A=0 oder B=0 eingegeben wird, wird nicht zwischen ansteigender (+) oder fallender (-) Kante unterschieden.


Die zuletzt eingelernte Pixel-Position der Kante EDG_A = 2768. Im Auswertemodus POSITION wird EDG_A = EDG B gesetzt.

	Α	В	EVALMOD	E	TEACH	TOL[+]	TOL[-]	CNT	EDG_A	EDG_B
0	0	0	POSITION	Ŧ	2768	503	503	4	2768	2768
1	-1	1	DISTANCE V		874	503	503	4	2768	3642
2	1	-2	CENTER	Ŧ	5259	503	503	4	3640	6880
3	-1	2	DISTANCE ▼		4976	503	503	4	2768	7744

PROG=1: DISTANZ zwischen der ersten negativen und der ersten positiven Kante:

Eingelernt und ausgewertet wird die DISTANZ zwischen der ersten fallenden Kante (A = -1)und der ersten steigenden Kante (B = +1) beginnend mit der Suchrichtung von Links bei Pixel 1.

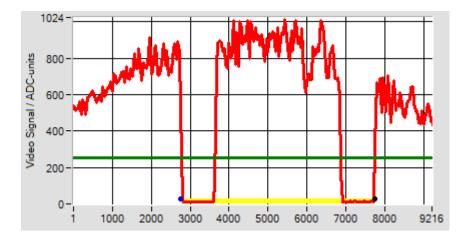
Die zuletzt eingelernte Pixel-Position der Kante EDG A = 2768, die Pixel-Position der zweiten Kante EDG_B = 3641. Der Abstand der beiden Kanten A und B beträgt 7.0[mm] oder 881 [Pixel].

	Α	В	EVALMOD	E	TEACH	TOL[+]	TOL[-]	CNT	EDG_A	EDG_B
0	0	0	POSITION	Ŧ	2768	503	503	4	2768	2768
1	1	1	DISTANCE	DISTANCE 🔻		503	503	4	2768	3632
2	1	-2	CENTER	٧	5259	503	503	4	3640	6880
3	-1	2	DISTANCE	Ŧ	4976	503	503	4	2768	7744

PROG=2: ZENTRUM zwischen der ersten positiven und zweiten negativen Kante:

Eingelernt und ausgewertet wird das ZENTRUM (Mittelabstand) zwischen der ersten steigenden Kante (A = +1) und der zweiten fallenden Kante (B = -2)beginnend mit der Suchrichtung von Links bei Pixel 1.

Die zuletzt eingelernte Pixel-Position der Kante EDG_A = 3641, die Pixel-Position der zweiten Kante EDG B = 6880. ZENTRUM zwischen beiden Kanten A und B liegt bei (A+B)/2 = 5260 [Pixel].


	Α	В	EVALMOD	E	TEACH	TOL[+]	TOL[-]	CNT	EDG_A	EDG_B
0	0	0	POSITION	Ŧ	2768	503	503	4	2768	2768
1	-1	1	DISTANCE	DISTANCE 🔻		503	503	4	2768	3632
2	1	-2	CENTER	۳	5259	503	503	4	3640	6880
3	-1	2	DISTANCE V		4976	503	503	4	2768	7744

PROG=3: ABSTAND zwischen der ersten negativen und der zweiten positiven Kante:

Eingelernt und ausgewertet wird das ZENTRUM (Mittelabstand) zwischen der ersten fallenden Kante (A = -1) und der zweiten steigenden Kante (B = +2) beginnend mit der Suchrichtung von Links bei Pixel 1.

Die zuletzt eingelernte Pixel-Position der Kante EDG_A = 2768, die Pixel-Position der zweiten Kante EDG_B = 7744. Der ABSTAND zwischen beiden Kanten A und B liegt bei (B-A) = 4976 [Pixel].

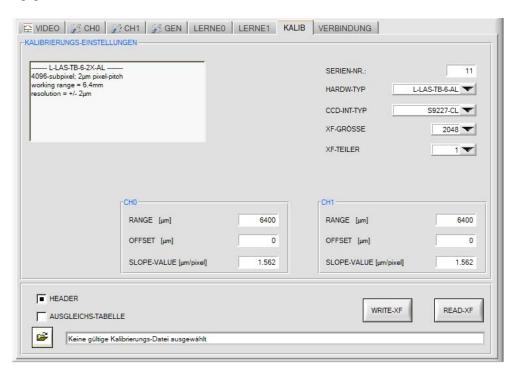
LERNE POSITION:

Mithilfe dieser Taste wird die Lernfunktion an der Kontrollelektronik ausgelöst.

AKTUALISIERE:

Mithilfe dieser Taste wird der aktuell eingestellte Lernvektor (Programm-Nummer) zum PC übertragen, ferner wird das Video-Profil aktualisiert.

PROG-NR:


Mithilfe dieses Funktionsfeldes kann ein Programm ausgewählt werden. Das ausgewählte Programm wird in der Lerntabelle mit Fettdruck hervorgehoben.

3.6 KALIBRIERUNGS-EINSTELLUNGEN Register-Karte:

KALIB Registerkarte:

Nach Anklicken von des [KALB] Reiters öffnet sich ein Fenster zur Anzeige der Kalibrierdaten. Die Kalibrierdaten werden automatisch nach erfolgreichem Verbindungsaufbau vom *L-LAS-TB-...-AL* Sensor zum PC übertragen. Die erkannte Hardware und weitere Informationen zum Messbereich und zur Sensor Auflösung wird in einem Textfeld ausgegeben.

Sensor Kalibrierdaten:

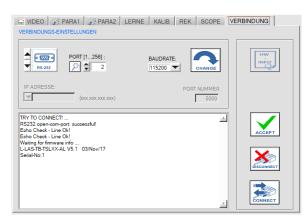
In verschiedenen Funktions-Feldern werden die sensorspezifischen Werks-Einstellwerte angezeigt.

Die Werkseinstellung kann nur vom Hersteller geändert werden!

SERIEN-NR: Serien-Nummer 4-stellig

HARDW-TYP: Hardware-Bezeichnung des Sensors

XF-GRÖSSE: Größe der Look-Up-Tabelle


XF-TEILER: Divisor zur Umrechnung der Look-Up-Werte.

RANGE [µm]: Messbereich
OFFSET [µm]: Offset

STEIGUNG/EMPF. [µm/pixel]: Empfindlichkeit

3.7 VERBINDUNG Register-Karte:

VERBINDUNG Registerkarte:

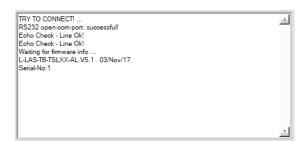
Nach Anklicken dieser Registerkarte öffnet sich auf der Bedienoberfläche das VERBINDUNGS Fenster. Hier können verschiedene Einstellungen zum Datenaustausch über die serielle RS232 Schnittstelle vorgenommen werden. Grundsätzlich basiert die Kommunikation auf folgenden Vorgabewerten:

- Standard RS232:, kein Hardware-Handshake
- 3-Draht Verbindung: GND, TXD, RXD
- Baudraten von 9600Baud bis 115200Baud
- 8 DATEN-Bits, 0 PARITÄTS-Bit, 1 STOP-Bit
- Höchstwertiges Byte zuerst (MSB first).

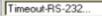
CONNECT:

Nach Anklicken dieser Taste wird mit den eingestellten Kommunikations-Parametern versucht eine Verbindung zum Sensor aufzubauen. Die Rückmeldung über den Verlauf des Verbindungsaufbaus erfolgt im Status Anzeigefeld.

DISCONNECT:


Die Verbindung zur Sensor-Hardware wird getrennt. Der zuvor geöffnete Kommunikations-Port wird wieder freigegeben.

ACCEPT:


Mit der Taste ACCEPT werden die aktuellen Kommunikations-Einstellungen in die Datei *TB-Scope.ini* gespeichert. Nach Neustart der *L-LAS-TB-2X-Scope* Software wird die Kommunikation mit den in der *TB-Scope.ini* Datei gespeicherten Parameter geöffnet.

<u>STATUS-MELDUNGEN – VERBINDUNGS-PROBLEME:</u>

Beim Start der Software wird versucht, über die zuletzt verwendete COM Schnittstelle eine Verbindung zum *L-LAS-TB-...-AL Sensor* aufzubauen.

Falls der Verbindungsaufbau erfolgreich war, wird die aktuelle Firmware Version und die Serien-Nummer des Sensors im Status Textfeld angezeigt.

Die serielle Verbindung zwischen dem PC und der *L-LAS-TB-...-AL Kontrollelektronik* konnte nicht aufgebaut werden oder die Verbindung ist unterbrochen.

In diesem Falle sollte zuerst geprüft werden ob die L-LAS-TB-...-AL Kontrollelektronik an die Spannungsversorgung angeschlossen ist und das serielle Verbindungskabel richtig zwischen dem PC und der Kontrollelektronik angeschlossen ist.

Falls die Statusmeldung "Invalid port number" lautet, ist die ausgewählte Schnittstelle z.B. COM2 an Ihrem PC nicht verfügbar.

Falls die Statusmeldung "Cannot open port" lautet, ist die ausgewählte Schnittstelle (z.B. COM2) eventuell schon von einem anderen Gerät belegt.

KOMMUNIKATIONS-TYP:

In diesem Funktionsfeld kann die Betriebsart der Datenübertragung eingestellt werden:



Datenübertragung erfolgt über die Standard RS232 Schnittstelle.

Datenübertragung erfolgt über einen RS232-TCP/IP Ethernet Wandler-Baustein.

PORT [1...256]:

In diesem Funktionsfeld kann die Nummer des Kommunikations-Port eingestellt werden. Mögliche Werte sind COM 1 bis 255.

Die Kommunikations-Port-Nummer kann in der Systemsteuerung unter: START/Systemsteuerung/Geräte-Manager im Windows® Betriebssystem finden.

Alternativ können die Kommunikations-Port-Nummern, die auf der Rechner Hardware verfügbar sind, durch Anklicken der Lupe-Taste gesucht werden.

Die Verfügbaren COM-Ports werden im Status-Textfeld angezeigt.

👰 Computer

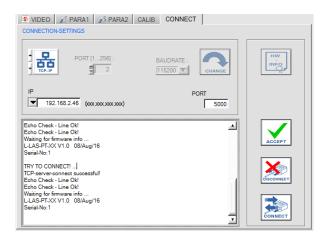
BAUDRATE:

In diesem Funktionsfeld kann die Baudrate der seriellen Schnittstelle eingestellt werden: Mögliche Werte: 9600Baud, 19200Baud, 38400Baud, 57600Baud oder 115200Baud. (Auslieferungszustand = 115200 Baud).

RS232 open-com-port: successful!

Try to change baudrate... Baudrate-change OK!

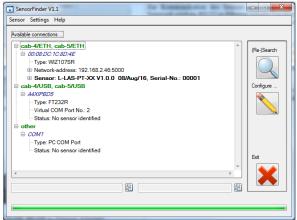
RS232 open-com-port: successful!


CHANGE BAUDRATE:

Nach Anklicken dieser Taste wird an der Sensor-Hardware die Baudrate der seriellen Schnittstelle auf den im SELECT-BAUDRATE Listenfeld angewählten Wert verändert. Falls die Änderung der Baudrate am Sensor erfolgreich war erscheint eine entsprechende Statusmeldung.

Die Änderung der Baudrate wird lediglich im flüchtigen RAM des *L-LAS-TB-...-AL Sensors* ausgeführt. Um eine dauerhafte Änderung der Baudrate zu erreichen muss über die [SENDE] + [EEPROM] Taste die neue Baudrate in das EEPROM gespeichert werden!

3.9.1 Datentransfer über den externen RS232 Ethernet Adapter:



cab-4/ETH-500 RS232 zu Ethernet Adapter

Zur Kommunikation des Sensors über ein lokales Netzwerk wird ein RS232 zu Ethernet Adapter benötigt. Dieser ermöglicht es eine Verbindung zum Sensor über das TCP/IP Protokoll herzustellen.

Der Netzwerk-Adapter wandelt die Standard RS232 Signale des Sensors und stellt eine Schnittstelle zu einem LAN Netzwerk bereit. Die RS232 Schnittstelle kann mit einer Baudrate von 115200Baud betrieben werden.

Eine mit dem Adapter mitgelieferte Software (Sensor-Finder) kann der Adapter im Netzwerk gesucht – und anschließend konfiguriert werden:

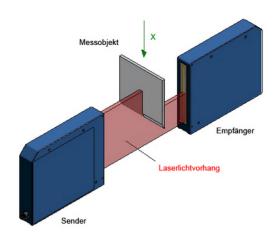
Software: SensorFinder V1.1

IP ADDRESS:

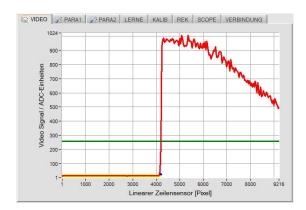
Eingabemaske zur Eingabe der IP-Adresse.

PORT NUMBER:

Die **PORT NUMBER** für des Netzwerkadapters ist auf PORT:5000 festgelegt und muss so eingestellt werden.


ACCEPT SETTINGS:

Mit der Taste ACCEPT SETTINGS werden die aktuellen Einstellwerte der *L-LAS-TB-2X-Scope* Software in die *TB-Scope.ini* Datei gespeichert. Das Popup-Fenster wird hierauf geschlossen. Nach Neustart der *L-LAS-TB-2X-Scope* Software werden die in der INI-Datei gespeicherten Parameter geladen.


4 Arbeit mit der L-LAS-TB-2X-Scope Software

4.1 Hilfsmittel zur Justierung, Numerische und Graphische Anzeigeelemente

Die nebenstehende Abbildung zeigt die Prinzipielle Arbeitsweise des *L-LAS-TB-...-AL Sensors im* Durchlichtbetrieb.

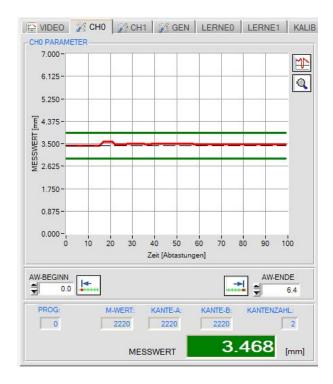
Der Laserstrahl wird auf seinem Weg zwischen Sender und Empfänger teilweise abgedeckt. Aus dem sich hieraus ergebenden typischen Intensitätsverlauf am Zeilensensor (VIDEO Bild) kann die Objektposition ermittelt werden.

KANTEN-ZAHL: 1 KANTE-A: 4201 KANTE-B: 4201

VIDEO-BILD:

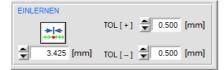
X-Achse: Position der Pixel der Empfängerzeile. Y-Achse: Intensitätshöhe über dem einzelnen Pixel.

Aus dem VIDEO-Bild (rote Kurve), das sich bei teilweiser Abdeckung durch das Messobjekt ergibt, kann die Position des unteren Endes des Messobjektes errechnet werden. Hierbei werden die Abgedeckten Pixel des Zeilensensors ermittelt (geringe Intensität).


Die Berechnung der "Kantenwerte" erfolgt mittels einstellbarer Komparator-Schwelle (=Video-Schwelle, grüne horizontale Linie). Die errechnete Kantenposition (Pixel) wird durch einen schwarzen Marker angezeigt.

Ferner werden die Kantenposition und die erkannte Kantenanzahl in Numerischen Anzeigefeldern dargestellt. Im Bereich unterhalb des Messobjektes kann der Laserstrahl ungehindert vom Sender auf die Empfänger-Pixelzeile auftreffen. Hierdurch ergibt sich eine größere Intensität über den einzelnen Pixel.

Falls sich die Position des Messobjektes nach unten oder oben verschiebt, wird sich die Position der "Kante" im VIDEO-Bild nach rechts oder links verschieben. Diese Änderung führt zu einer Messwertänderung, die mittels Toleranzschwellen überwacht werden kann.


4.2 Einlernen der Referenz-Position

Im Messwerte-Anzeigemodus kann bei langsamer Bewegung des Messobjektes die Messwerte-Änderung (= Position des Messobjektes) beobachtet werden.

Hierbei laufen die aktuellen Messwerte (Pixelwerte) von rechts nach links durch das graphische Anzeigefenster.

Aus den hierbei beobachteten Messwertschwankungen ergibt sie das minimal einstellbare Toleranz-Band um den Referenz-Wert.

EINLERNEN:

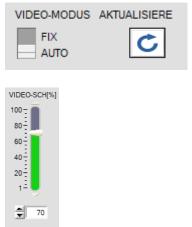
Durch Anklicken der Software Taste oder durch Zahlenwert Eingabe in das TEACH-IN Eingabefeld kann ein Referenzwert am Sensor vorgegeben werden

Nach Anklicken der TEACH-IN Taste wird die Lernprozedur am Sensor ausgelöst. Hierbei wird die aktuell ausgewählte Kante als Lernposition herangezogen. Die Größe des Toleranzbandes kann in den entsprechenden Vorgabefeldern voreingestellt werden.

TEACH-Funktion mit der SPS:

Alternativ kann die Lernfunktion auch durch den Digitaleingang IN1 mit der SPS ausgelöst werden.

Durch Anlegen eines HIGH-Pulses von mehr als **1.5s** Dauer wird am *L-LAS-TB-...-AL Sensor* die LERN-Funktion ausgeführt. Nach Erkennung des TEACH-Pulses blinkt die orange POWER LED am Gehäuse 3x kurz auf.

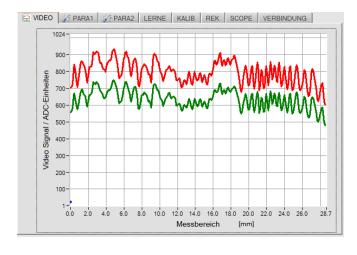

Die aktuell erkannte Kantenposition wird als Lernwert herangezogen. Das Toleranzband wird automatisch um den so gefundenen Referenzwert neu berechnet. Die Schaltschwellen für die Digitalausgänge werden somit neu berechnet.

4.3 Arbeit mit der nachgeführten Video-Schwelle

Die nachgeführte Videoschwelle wird hauptsächlich bei der Kontrolle von transparenten Objekten (z.B. Folien) eingesetzt.

AUTO-VIDEO-MODUS:

Die Nachgeführte Video-Schwelle muss durch Einstellen des Umschalters auf AUTO und anschließend durch Anklicken der [SEND] Taste aktiviert werden.


Die Video-Schwelle wird im AUTO-Modus aus dem aktuellen Intensitätsverlauf abgeleitet. Hierzu muss am Schieberegler VIDEO-SCH[%] eine prozentuale Schwelle vorgegeben werden.

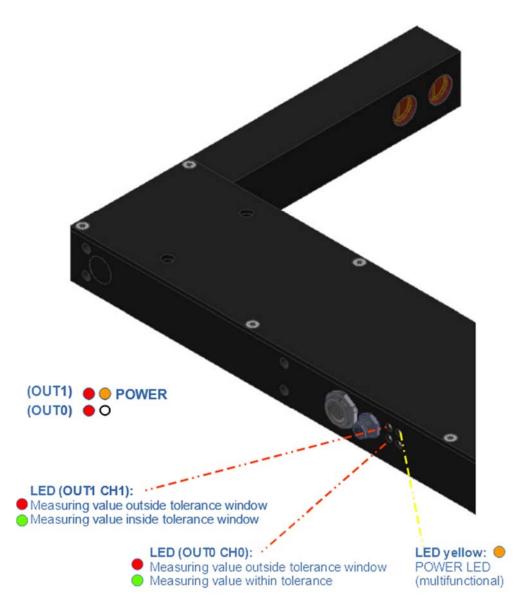
Nach Anklicken der AKTUALISIERE Taste wird zunächst ein Dialog-Fenster geöffnet, mit der Warnung, dass die Lichtmess-Strecke zwischen Sender und Empfänger frei sein sollte.

Nach Bestätigung durch Anklicken der [Yes] Taste wird die Nachführung der Videoschwelle am Sensor ausgelöst.

Die Graphik-Anzeige wechselt automatisch auf den VIDEO Tabulator. Hier wird das aktuelle Video-Profil (rot) und die daraus abgeleitete Video-Schwelle (grün) angezeigt.

Rote Kurve: Video Profil Grüne Kurve: Video Schwelle

Mit Hilfe der Nachgeführten Schwelle kann die Kantendetektion bei teiltransparenten Objekten erleichtert werden. Die Schwelle Kantenerkennung wird unmittelbar unterhalb des aktuellen Intensitätsverlaufs nachgeführt.



5 Anhang

5.1 Anzeige-Elemente

Am Gehäuse der *L-LAS-TB-...-AL Kontrollelektronik* befinden sich 4 zweifarbige Leuchtdioden zur Visualisierung der Systemzustände der beiden Messkanäle CH0 und CH1.

L-LAS-TB-...-AL (Sensor)

5.2 Laserwarnhinweis

LASERWARNHINWEIS

Halbleiterlaser, λ =670 nm, 0.4mW max. optische Leistung, Laser Klasse 1 gemäß EN 60825-1

Für den Einsatz dieser Lasersender sind daher keine zusätzlichen Schutzmaßnahmen erforderlich.

LASER KLASSE 1 DIN EN 60825-1: 2008-05

5.3 Funktionsweise des Digitaleingangs IN0

Die Funktionsweise des Digitaleingangs IN0/Pin3/grün ist Abhängig von der am EXT-IN0-MODUS Funktionsfeld (PARAMETER-1 Register-Karte) eingestellten Betriebsart:

Der Zustand von INO wird an der Bedienoberfläche an der IN0 LED angezeigt. Bei einem HIGH-Pegel (+24VDC) leuchtet die LED grün.

Die Zustandsänderung wird nur bei aktiver Daten-Übertragung aktualisiert!

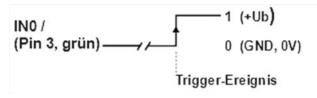
NO USE = KONTINUIERLICHER BETRIEB:

Die Kontrollelektronik wertet die Videobilder kontinuierlich aus. Das Auswerteergebnis wird ständig an den Digitalausgängen (OUT0, OUT1, OUT2) und am Analogausgang ausgegeben.

TRIGG-IN0 L/H:

Das aktuelle Videobild unmittelbar nach der LOW/HIGH Flanke wird zur Auswertung herangezogen und ausgegeben.

TRIGG IN0 HIGH:


Die Auswertung der Videobilder findet nur bei einem HIGH Pegel (+24VDC) an Pin3/IN0 statt.

LASER ON/OFF:

Über den externen Trigger-Eingang INO/Pin3 kann der Laser-Sender ein – oder ausgeschaltet werden.

IN0 = 0V: LASER AUS IN0 = +24VDC: LASER EIN

TRIGG-IN0 L/H:

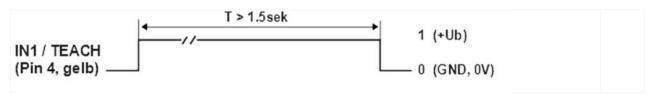
Externe flankengesteuerte (LOW/HIGH) Triggerung der Messwertauswertung über den Digitaleingang IN0.

TRIGG-IN0 HIGH:

Externe Triggerung der Messwertauswertung über einen HIGH-Pegel (+24VDC) am Digitaleingang IN0.

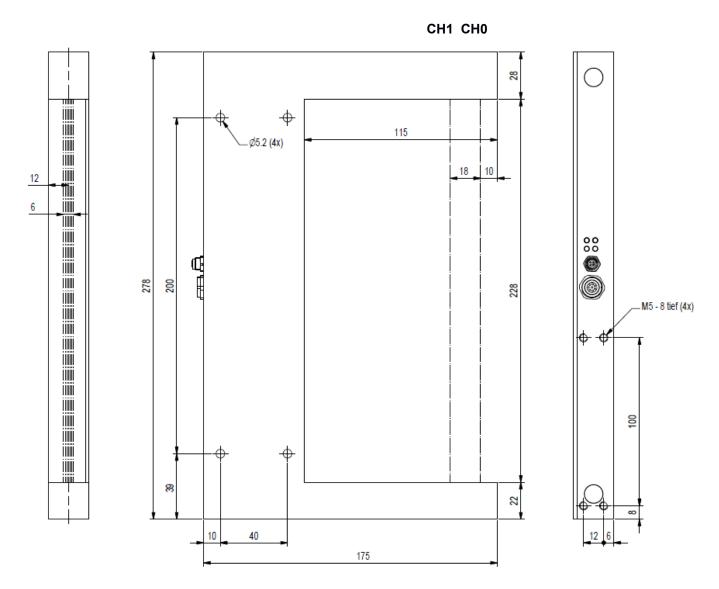
5.3 Funktionsweise des Digitaleingangs IN1

RESET-Funktion:


Durch Anlegen eines HIGH-Pulses von weniger als **750 ms** Dauer wird am *L-LAS-TB-...-AL Sensor* die RESET-Funktion ausgeführt. Hierbei werden die aktuellen Maximal- und Minimalwerte (Schleppzeiger) zurückgesetzt. **Es wird kein Hardware/Software RESET durchgeführt!**

Nach Erkennung des RESET-Pulses blinkt die grüne POWER LED am Gehäuse 1x kurz auf.

```
IN1 / RESET (Pin 4, gelb) 1 (+Ub) (GND, 0V)
```


TEACH-Funktion:

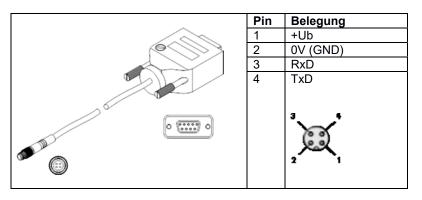
Durch Anlegen eines HIGH-Pulses von mehr als **1.5s** Dauer wird am *L-LAS-TB-...-AL Sensor* die LERN-Funktion ausgeführt. Nach Erkennung des TEACH-Pulses blinkt die grüne POWER LED am Gehäuse 3x kurz auf.

5.4 Abmessungen

(alle Angaben in mm)

5.5 Anschlussbuchsen

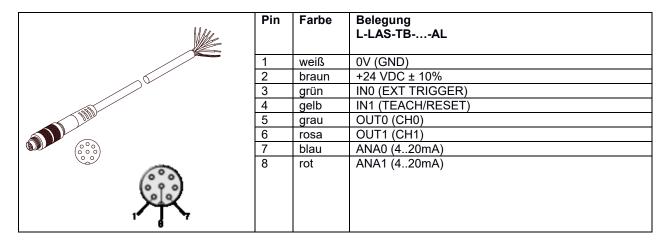
Am Gehäuse der L-LAS-TB-...-AL Sensoren befinden sich zwei Anschlussbuchsen.


Über 4-polige M5 Anschluss-Buchse Typ Binder 707 erfolgt die Kontaktierung der seriellen RS232 Schnittstelle.

Über eine 8-polige M9-Anschluss-Buchse Typ Binder 712 kann der Sensor mit der SPS/Spannungsversorgung verbunden werden.

RS232-Anschluss an PC:

4-polige M5 Buchse Typ Binder 707,


Anschlusskabel: cab-las4/PC (Länge 2m, Kabelmantel: PUR)

Interface zur SPS/Spannungsversorgung:

8-polige Buchse Typ Binder 712

Anschlusskabel:cab-las8/SPS (Länge 2m, Kabelmantel: PUR)

5.6 **RS232 Schnittstellenprotokoll**

- Standard RS232 serielles Interface, kein Hardware Handshake
- 3-Draht-Verbindung: GND, TXD, RXD
- Geschwindigkeit: 9600 Baud, 19200 Baud, 38400 Baud, 57600 Baud oder 115200 Baud
- 8 Daten-Bits
- KEIN Paritäts-Bit
- 1 STOP-Bit
- Binärdaten-Modus.

METHODE:

Die Sensor Kontrollelektronik verhält sich stets passiv. Der Datenaustausch wird daher vom PC (oder SPS) initiiert. Der PC sendet hierbei ein Datenpaket ("Frame") wahlweise mit oder ohne angehängte Daten, worauf die Sensor-Kontrolleinheit mit einem der Anforderung entsprechenden Frame antwortet. Das Datenpacket besteht aus einem Kopfteil ("HEADER") und dem optionalen Daten-Anhang ("DATA").

1. Byte : Synchronisationsbyte <SYNC> (85dez = 0x55hex)
2. Byte : Befehlsbyte <ORDER>

3. Byte: Argument < ARG LO>

4. Byte: Argument < ARG HI>

5. Byte: Datenlänge <LEN LO>

6. Byte: Datenlänge <LEN HI>

7. Byte: Checksumme Header < CRC8 HEAD>

8. Byte: Checksumme Data < CRC8 DATA >

Das erste Byte ist ein Synchronisationsbyte und ist immer $85_{\rm dez}$ ($55_{\rm hex}$). Das zweite Byte ist das sog. Befehlsbyte <ORDER>, es bestimmt welche Aktion durchgeführt werden soll (Daten senden, Daten speichern, usw.). Als drittes und viertes Byte folgt ein 16bit Wert <ARG>. Das Argument wird abhängig vom Befehl mit einem entsprechenden Wert belegt. Das fünfte und sechste Byte bilden wieder einen 16bit Wert <LEN>. Er gibt die Anzahl der angehängten Datenbytes an. Falls keine Daten angehängt werden ist <LEN=0>, die maximale Datenlänge beträgt 512 Bytes <LEN=512>. Das siebte Byte wird mit der CRC8 Checksumme über alle Datenbytes gebildet. Das achte Byte ist die CRC8 Checksumme über den Header und wird über die Bytes 1 bis incl. 7 gebildet. Die Gesamtlänge des Headers ist stets 8 Bytes. Der gesamte Frame kann zwischen 8 und 520 Bytes umfassen.

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	 Byte n+7	Byte n+8
Header	Header	Header	Header	Header	Header	Header	Header	Data	Data	Data	Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Data1 (lo byte)	Data1 (hi byte)	 Data n/2 (lo byte)	Data n/2 (hi byte)

<order></order>	Meaning of the 2.nd byte <order>:</order>	ORDER-TABLE
0	NOP	no operation
1	Send parameter from PC to L-LAS-RAM	$PC \Rightarrow L\text{-}LAS\text{-}RAM$
2	Get parameter from L-LAS-RAM	L-LAS-RAM ⇒ PC
3	Send parameter from PC to EEPROM	PC ⇒ L-LAS-EEPROM
4	Get parameter from EEPROM of L-LAS	L-LAS-EEPROM ⇒ PC
5	Echo check: Get echo of L-LAS	first word=0x00AA=170dec
6	Activate teach at L-LAS, store in RAM	$PC \Rightarrow L\text{-}LAS\text{-}RAM$
7	Get software version info of L-LAS	L-LAS ⇒ PC
8	Get measured values from L-LAS-RAM	L-LAS-RAM ⇒ PC
9	Get video-buffer info from L-LAS	L-LAS-RAM ⇒ PC
11	Reset maximum/minimum values at analog-output	PC ⇒ L-LAS-RAM
18	Get data recorder values from L-LAS	L-LAS-RAM ⇒ PC
22	Set laser power at L-LAS	PC ⇒ L-LAS-RAM
190	Change RS232-baud-rate (L-LAS-RAM)	PC ⇒ L-LAS-RAM

CRC8 Checksumme

Zur Verifizierung der Datenintegrität wird der sog. "Cyclic Redundancy Check" oder CRC verwendet. Mit Hilfe dieses Algorithmus können einzelne Bitfehler, fehlende Bytes und fehlerhafte Frames erkannt werden. Dazu wird über die zu testenden Daten (-bytes) ein Wert – die sog. Checksumme – berechnet und mit dem Datenpaket übertragen. Die Berechnung folgt dabei einer genau vorgegebenen Methode basierend auf einem Generatorpolynom. Die Länge der Checksumme ist 8bit (= 1 byte). Das Generatorpolynom entspricht: $\chi^{8} + \chi^{4} + \chi^{1}$

Um die Daten nach dem Empfang zu verifizieren wird die CRC Berechnung erneut durchgeführt. Stimmen übertragener und neu errechneter CRC Wert überein, sind die Daten fehlerfrei.

Um die Checksumme zu berechnen kann folgender Pseudocode verwendet werden:

table[]

rapie[]															
0	94	188	226	97	63	221	131	194	156	126	32	163	253	31	65
157	195	33	127	252	162	64	30	95	1	227	189	62	96	130	220
35	125	159	193	66	28	254	160	225	191	93	3	128	222	60	98
190	224	2	92	223	129	99	61	124	34	192	158	29	67	161	255
70	24	250	164	39	121	155	197	132	218	56	102	229	187	89	7
219	133	103	57	186	228	6	88	25	71	165	251	120	38	196	154
101	59	217	135	4	90	184	230	167	249	27	69	198	152	122	36
248	166	68	26	153	199	37	123	58	100	134	216	91	5	231	185
140	210	48	110	237	179	81	15	78	16	242	172	47	113	147	205
17	79	173	243	112	46	204	146	211	141	111	49	178	236	14	80
175	241	19	77	206	144	114	44	109	51	209	143	12	82	176	238
50	108	142	208	83	13	239	177	240	174	76	18	145	207	45	115
202	148	118	40	171	245	23	73	8	86	180	234	105	55	213	139
87	9	235	181	54	104	138	212	149	203	41	119	244	170	72	22
233	183	85	11	136	214	52	106	43	117	151	201	74	20	246	168
116	42	200	150	21	75	169	247	182	232	10	84	215	137	107	53

5.6.1 Parameter set format

Die Sensoren der *L-LAS-TB-...-AL Serie* arbeiten mit folgenden Parametern, die in der angegebenen Reihenfolge im Daten-Anhang zum Sensor übertragen, bzw. vom Sensor ausgelesen werden müssen:

	DATA	-FRAME: <parameter-set> 64 word, 128 byte</parameter-set>								
Para	Meaning	Comment								
1	INTEGRATION-TIME	Integration time 0.8ms 5ms (= 800 5000)								
2	POWER-MODE *)	Laser power mode: (0 = STATIC), (1=DYNAMIC), (2=DYN-EXPOSE)								
3	BACKGROUND-MODE *)	Background compensation (0:=OFF, 1:=ON)								
4	POLARITY	Polarity for OUT0, OUT1 und OUT2 (0=DIRECT, 1=INVERT)								
5	DOUT-MODE	Mode for digital outputs (0, or 1)								
6	OP-MODE	CCD-op-mode (0=FULL RES/NORMAL-SPEED, 1=HALF RES/FAST-								
	OT TWODE	SPEED)								
7	MAX-PROG	Max program 4=DEFAULT, 2								
8	ANA-MODE	Analog-mode (0=DIRECT,1=MAXIMA,2=MINIMA,3=MAX_MIN)								
9	ANA-ZOOM	Analog-output-zoom-mode: output (0=DIRECT, 1=ZOOMx1, 2=ZOOMx2, 3=ZOOMx4, 4=ZOOMx8, 5=ZOOMx16, 6=WIN 10V)								
10	RS232-MODE *)	RS232 mode: (0=STAT,1=IN0-L/H,2=IN0-HI[6-byte],3=CONT[6-byte]								
11	RS232-BAUDRATE	Baudrate: (0=9600,1=19200,2=38400,3=57600,4=115200) baud								
12	EXT-TRIGG-MODE	External-trigger-mode:(0=CONTINOUS, 1=IN0 L/H, 2=IN0 HI, 3=PROG2, 4=PROG4, 5=LASER-ON)								
13	TEACH-TARGET *)	0=RAM, 1=EE								
14	DIRT-DETECT *)	0=OFF, 1=MV START, 2=MV END, 3=(MV START+MV END)/2								
15	FREE15	0								
16	FREE16	0								
17	POWER CH0	Laser intensity (0 1000)								
18	SEARCH-DIRECTION CH0	Edge search: (0:= LEFT_TO_RIGHT, 1:=RIGHT_TO_LEFT)								
19	E-BEG CH0	Evaluation start-pixel (1 E_END - 1)								
20	E-END CH0	Evaluation end -pixel (E_BEG+1 SUBPIXEL)								
21	EVAL-MODE CH0	Evaluation mode (0=POS, 1=CENTER, 2=DISTANCE)								
22	EVAL-PROG CH0	Evaluation program (0,1,2 or 3)								
23	TEACH-VALUE CH0	Teach-value (1 SUBPIXEL)								
24	TOLERANCE-HI-VALUE	Upper-tolerance (0 SUBPIXEL/2)								
25	TOLERANCE-LO-VALUE	Lower-tolerance (0 SUBPIXEL/2)								
26	AVERAGE	Average-setting (1,2,4,5,16,32,64,128,256, 512 or 1024)								
27/28	UM-TEACH CH0	Teach-value in [microns] Attention long variable 32 bit								
29/30	UM-TOLUP CHO	Upper tolerance in [microns] Attention long variable 32 bit								
31/32	UM-TOLLO CHO	Lower tolerance in [microns] Attention long variable 32 bit								
33	VIDEO-THRESHD MODE	Video-threshold FIX (0 100)								
34	VIDEO-THRESHD FIX	Video-threshold FIX (0 100)								
35	VIDEO-THRESHD AUTO	Video-threshold AUTO (0 100)								
36	VIDEO-SMOOTH	Smooth video signal over (1,2,4,6,8,12,14,16,32,or 64) pixel								
37	INT-TRIGG-MODE	Internal-trigger-mode (0=DISABLE, 1=ENABLE-DARK, 2=ENABLE-LIGHT)								
	INT-TRIGG-MODE	Internal-trigger-threshold pixel (1 SUBPIXEL)								
39	DIRT THRESHOLD CH0 *)	Dirt detection threshold (0100)								
40	FREE CH0	Dirt dottodarii directiola (c 100)								
41	POWER CH1	Laser intensity (0 1000)								
42	SEARCH-DIRECTION CH1	Edge search: (0:= LEFT_TO_RIGHT, 1:=RIGHT_TO_LEFT)								
43	E-BEG CH1	Evaluation start-pixel (1 E_END - 1)								
44	E-END CH1	Evaluation end -pixel (E_BEG+1 SUBPIXEL)								
45	EVAL-MODE CH1	Evaluation mode (0=POS, 1=CENTER, 2=DISTANCE)								
46	EVAL-PROG CH1	Evaluation friode (0-POS, 1-CENTER, 2-DISTANCE) Evaluation program (0,1,2 or 3)								
47	TEACH-VALUE CH1	Teach-value (1 SUBPIXEL)								
48	TOLERANCE-HI-VALUE CH1	Upper-tolerance (0 SUBPIXEL/2)								
49	TOLERANCE-LO-VALUE CH1	Lower-tolerance (0 SUBPIXEL/2)								
50	AVERAGE CH1	Average-setting (1,2,4,5,16,32,64,128,256, 512 or 1024)								
	I WEIN OF OUR									
51/52	UM-TEACH CH1	Teach-value in [microns] Attention long variable 32 bit								

55/56	UM-TOLLO CH1	Lower tolerance in [microns] Attention long variable 32 bit
57	VIDEO-THRESHD MODE CH1	Video-threshold FIX (0 100)
58	VIDEO-THRESHD FIX CH1	Video-threshold FIX (0 100)
59	VIDEO-THRESHD AUTO CH1	Video-threshold AUTO (0 100)
60	VIDEO-SMOOTH CH1	Smooth video signal over (1,2,4,6,8,12,14,16,32,or 64) pixel
61	INT-TRIGG-MODE CH1	Internal-trigger-mode (0=DISABLE, 1=ENABLE-DARK, 2=ENABLE-LIGHT)
62	INT-TRIGG-THD CH1	Internal-trigger-threshold pixel (1 SUBPIXEL)
63	DIRT THRESHOLD CH1*)	Dirt detection threshold (0100)
64	FREE CH1	

^{*)} currently not used, default value=0

5.6.2 RS232 data transfer examples

< ORDER = 5 > : ECHO-CHECK, READ LINE OK from sensor.

DATA FRAME PC → Sensor (8 Bytes)

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85	5	0	0	0	0	170	60
		ARG=0		LEI	N=0		

DATA FRAME Sensor → PC (8 Bytes)

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85	5	170	0	0	0	170	178
		ARG	=170	LEI	N=0		

Serial – number of sensor = <ARG> value

< ORDER = 7 > : Read FIRMWARE-VERSION STRING from sensor.

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	7	0	0	0	0	170	82
		ARG=0		LEI	N=0		

DATA FRAME Sensor → PC (8 + 72) Bytes

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	ASCII	ASCII	ASCII	ASCII
85 (dec)	7	1	2	72	0	252	82	L	-	L	Α
		ARC=513	(Ser -No)	LEN	I=72						

ASCII		Data										
	ASCII											
	Α	-	X	Х	L	S	T	-	В	T	-	S

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
ASCII											
L		V	5		1		0			10	/

Byte37	Byte38	Byte39	Byte40	Byte41	Byte42	Byte43	Byte44	Byte45	Byte46	Byte47	Byte48
Data											
ASCII											
N	0	٧	/	1	7						

Byte49 Data	Byte50 Data	Byte51 Data	Byte52 Data	Byte53 Data	Byte54 Data	Byte55 Data	Byte56 Data	Byte57 Data	Byte58 Data	Byte59 Data	Byte60 Data
ASCII											
											1
Byte61 Data	Byte62 Data	Byte63 Data	Byte64 Data	Byte65 Data	Byte66 Data	Byte67 Data	Byte68 Data	Byte69 Data	Byte70 Data	Byte71 Data	Byte72 Data
ASCII											
											ļ
Byte73	Byte74	Byte75	Byte76	Byte77	Byte78	Byte79	Byte80	1			
Data											
ASCII	ĺ										
								1			

< ORDER = 1 > : SEND PARAMETER-SET TO RAM of the sensor

DATA FRAME PC → Sensor (8 + 128) Bytes

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Para1 (lo byte)	Para1 (hi byte)	Para2 (lo byte)	Para2 (hi byte)
85 (dec)	1	0	0	42	0	XXX	81	32	3	0	0
		ARG=0		LEN	=128			I-TIME	=800	POW-N	IODE=0

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Para3	Para3	Para4	Para4	Para5	Para5	Para6	Para6	Para7	Para7	Para8	Para8
0	0	0	0	0	0	0	0	4	0	0	0
BG-M0	G-MODE=0 POLARITY=0		RITY=0	D-OUT-I	MODE=0	OP-MO	DDE=0	MAX-P	ROG=4	ANA-M	ODE=0

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
Para9	Para9	Para10	Para10	Para11	Para11	Para12	Para12	Para13	Para13	Para14	Para14
0	0	0	0	4	0	0	0	0	0	0	0
ANA-Z	0=MOC	RS-232-I	MODE=0	RS-232-	BAUD=4	EXT-TRG	-MODE=0	TEACH-T	ARGET=0	DIRT-DE	TECT=0

Byte37 Data	Byte38 Data	Byte39 Data	Byte40 Data	Byte41 Data	Byte42 Data	Byte43 Data	Byte44 Data	Byte45 Data	Byte46 Data	Byte47 Data	Byte48 Data
Para15	Para15	Para16	Para16	Para17	Para17	Para18	Para18	Para19	Para19	Para20	Para20
112	17	1	0	94	1	0	0	1	0	0	16
FREE	FREE15=0 FREE16=0		POW C	H0=350	SDIR-	CH0=0	EBEG-	CH0=1	EEND-C	H0=4096	

Byte49 Data	Byte50 Data	Byte51 Data	Byte52 Data	Byte53 Data	Byte54 Data	Byte55 Data	Byte56 Data	Byte57 Data	Byte58 Data	Byte59 Data	Byte60 Data
Para21	Para21	Para22	Para22	Para23	Para23	Para24	Para24	Para25	Para25	Para26	Para26
2	0	4	0	0	8	100	0	100	0	2	0
EMODE	-CH0=2	EPROG	G-CH0=4	TEACH-0	CH0=2048	TOLUP-0	CH0=100	TOLLO-0	CH0=100	AVG-0	CH0=2

•

Byte133 Data	Byte134 Data	Byte135 Data	Byte136 Data
Para63	Para63	Para64	Para64
25	0	0	0
DIRT-THE	CH1=25	FREE64	I-CH1=0

DATA FRAME Sensor → PC (8 Byte)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	do relo re	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
UXSS	<order></order>	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	1	0	0	0	0	170	81
		ARO	G=0	LEI	N=0		

< ORDER = 2 > : READ PARAMETER-FROM RAM of the sensor

DATA FRAME PC → Sensor (8 Bytes)

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	2	0	0	0	0	170	185
		AR	G=0	LEI	V=0		

DATA FRAME Sensor → PC (8+84) Bytes

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12
Header	Header	Header	Header	Header	Header	Header	Header	Data	Data	Data	Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Para1 (lo byte)	Para1 (hi byte)	Para2 (lo byte)	Para2 (hi byte)
85 (dec)	2	0	0	42	0	XXX	185	144	1	244	1
		AR	G=0	LEN	=128			POWE	R=400	INT-TIN	/IE=500

The data-block is similar to < ORDER = 1 >:

•

I	Byte133 Data	Byte134 Data	Byte135 Data	Byte136 Data
ſ	Para63	Para63	Para64	Para64
ſ	25	0	0	0
ſ	DIRT-THE	CH1=25	FREE64	I-CH1=0

< ORDER = 6 > : INITIATE TEACH-PROCEDURE at sensor (RAM)

The actual measurement value is set as new TEACH-IN value DATA FRAME PC → Sensor (8-Bytes + 32)Bytes

A and B values are used for detecting the valid edge. (+1 = first positive edge, -1=first negative edge, 0=outer edge)

Header Argument ARG is used to determine program number (0,1,2,3 for CH0 and 10,11,12,13 for CH1)

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Word1 (lo byte)	Word1 (hi byte)	Word2 (lo byte)	Word2 (hi byte)
85 (dec)	6	10	0	32	0	XXX	247	1	0	1	0
		ARG	i =10	LFN	J=34			A:	=1	B:	=1

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Word3	Word3	Word4	Word4	Word5	Word5	Word6	Word6	Word7	Word7	Word8	Word8
0	0	0	0	0	10	64	0	64	0	1	8
SDIR=0		EMO	DE=0	TEACH	H=2560	TOLU	IP=64	TOLL	O=64	EDCI	NT=1

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
Word9	Word9	Word10	Word10	Word11	Word11	Word12	Word12	Word13	Word13	Word14	Word14
0	10	0	10	39	16	0	0	100	0	0	0
EDG-A	EDG-A=2560 EDG-B=2560		UM-TEACH=4000				UM-TOLUP=100				

Byte37 Data	Byte38 Data	Byte39 Data	Byte40 Data						
Word15	Word15	Word16	Word16						
100	100 0 0 0								
UM—TOLLO=100									

DATA FRAME Sensor → PC (8 + 32) Bytes

New TEACH-VECTOR is sent back in refreshed-BYTES

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Word1 (lo byte)	Word1 (hi byte)	Word2 (lo byte)	Word2 (hi byte)
85 (dec)	6	1	0	32	0	XXX	236	1	0	1	0
		ARG =	1 = OK	LEN	l=32			A=	=1	B=	=1

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Word3	Word3	Word4	Word4	Word5	Word5	Word6	Word6	Word7	Word7	Word8	Word8
0	0	0	0	224	9	64	0	64	0	1	0
SDIR=0		EMODE=0		TEACH=2528		TOLUP=64		TOLLO=64		EDCI	NT=1

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
Word9	Word9	Word10	Word10	Word11	Word11	Word12	Word12	Word13	Word13	Word14	Word14
224	9	224	9	110	15	0	0	100	0	0	0
EDGE-A=2528 EDGE-B=2528			UM-TEA	CH=3950			UM-TOL	UP=100			

Byte37 Data	Byte38 Data	Byte39 Data	Byte40 Data				
Word 15	Word15	Word16	Word16				
100	0	0	0				
UM-TOLLO=100							

< ORDER = 8 > : READ MEASUREMENT DATA from sensor

DATA FRAME PC → Sensor (8 Bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	8	0	0	0	0	170	118
		AR	G=0	LEI	V=0		

DATA FRAME Sensor → PC (8 + 96) Bytes

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Raw1 (lo byte)	Raw1 (hi byte)	Raw2 (lo byte)	Raw2 (hi byte)
85 (dec)	8	0	0	60	0	250	118	68	13	141	13
		AR	G=0	LEN	1=60			EDGE_/	A = 3151	EDGE_E	3 = 3151

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Raw3	Raw3	Raw4	Raw4	Raw5	Raw5	Raw6	Raw6	Raw7	Raw7	Raw8	Raw8
78	8	2	0	7	192	2	0	0	8	11	0
M VAL = 3151		CNT = 1	UM VALUE = 25026					UM MAX	(= 25026		

Byte96 Data	Byte97 Data	Byte98 Data	Byte99 Data	Byte100 Data	Byte102 Data	Byte103 Data	Byte104 Data
Raw45	Raw45	Raw46	Raw46	Raw47	Raw47	Raw48	Raw48
235	1	0	0	214	3	0	0
MV_BEG=0		MV_E	ND=0		SCANTI	ME=4016	

	0x007F60E8	raw_struct
- raw.CH0x	0x007F60E8	raw_ch_struct
raw.CH0x.Lval	2235	unsigned short
raw.CH0x.Rval	2235	unsigned short
raw.CH0x.Mval	2235	unsigned short
raw.CH0x.edcnt	2	unsigned short
raw.CH0x.umVAL	3492	long int
raw.CH0x.umMAX	3946	long int
raw.CH0x.umMIN	426	long int
raw.CH0x.umTEACH	3425	long int
raw.CH0x.teach	2192	unsigned short
raw.CH0x.instate	0	unsigned short
raw.CH0x.videomax	1012	unsigned short
raw.CH0x.dynpow	0	unsigned short
raw.CH0x.dyntime	797	unsigned short
raw.CH0x.darkpix	2192	unsigned short
raw.CH0x.eprog	0	unsigned short
raw.CH0x.mvstart	0	unsigned short
raw.CH0x.mvend	0	unsigned short
raw.CH0x.rstate	0	short
raw.CH0x.scntime	1594	long int
⊟-raw.CH1x	0x007F6118	raw_ch_struct
raw.CH1x.Lval	2233	unsigned short
raw.CH1x.Rval	3108	unsigned short
raw.CH1x.Mval	875	unsigned short
raw.CH1x.edcnt	2	unsigned short
raw.CH1x.umVAL	1367	long int
raw.CH1x.umMAX	2414	long int
raw.CH1x.umMIN	365	long int
raw.CH1x.umTEACH	1353	long int
raw.CH1x.teach	866	unsigned short
··· raw.CH1x.instate	0	unsigned short
raw.CH1x.videomax	1008	unsigned short
raw.CH1x.dynpow	0	unsigned short
raw.CH1x.dyntime	797	unsigned short
··· raw.CH1x.darkpix	866	unsigned short
raw.CH1x.eprog	0	unsigned short
··· raw.CH1x.mvstart	0	unsigned short
··· raw.CH1x.mvend	0	unsigned short
raw.CH1x.rstate	0	short
raw.CH1x.scntime	1594	long int

< ORDER = 11 > : RESET MAX/MIN VALUE OF ANALOG-OUTPUT at sensor

DATA FRAME PC → Sensor (8 Bytes)

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	11	0	0	0	0	170	47
		AR	G=0	LEI	V=0		

DATA FRAME Sensor → PC (8 Bytes)

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
85 (dec)	11	0	0	0	0	170	47
		AR	G=0	LEI	N=0		

< ORDER = 190 > : CHANGE BAUDRATE at sensor (RAM)

DATA FRAME PC → Sensor

	Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header
	0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
ĺ	85 (dec)	190	1	0	0	0	170	14
			AR	G=1	LEI	N=0		

New baud rate is set by <ARG> value: ARG=0: baud rate = 9600

ARG=1: baud rate = 19200

ARG=2: baud rate = 38400

ARG=3: baud rate = 57600

ARG=4: baud rate = 115200

DATA FRAME Sensor → PC

I	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
1	Header	Header	Header	Header	Header	Header	Header	Header
	0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)
ſ	85 (dec)	190	0	0	0	0	170	195
			AR	G=0	LEI	N=0		

< ORDER = 9 > : GET VIDEO-DATA INFORMATION of sensor

ATTENTION: Only 128 pixel of the CMOS line-sensor array are transferred! The <ARG> value determines the source of the VIDEO-DATA-INFORMATION

ARG = 0 : CMOS-VIDEO-PIXEL-DATA

ARG = 1: VIDEO-TRESHOLD

Pixel 1..128 CH0 Video Image Pixel 129 ... 256 CH1 Video Image

DATA FRAME PC → Sensor

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Header	Header	Header	Header	Header	Header	Header	Header
0x55	<order></order>	<arg></arg>	<arg></arg>	<len></len>	<len></len>	CRC8	CRC8
UXSS	/order/	(lo byte)	(hi byte)	(lo byte)	(hi byte)	(Data)	(Header)
85 (dec)	9	0	0	0	0	170	185
		AR	G=0	LEI	V=0		

DATA FRAME Sensor → PC

Byte1 Header	Byte2 Header	Byte3 Header	Byte4 Header	Byte5 Header	Byte6 Header	Byte7 Header	Byte8 Header	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data
0x55	<order></order>	<arg> (lo byte)</arg>	<arg> (hi byte)</arg>	<len> (lo byte)</len>	<len> (hi byte)</len>	CRC8 (Data)	CRC8 (Header)	Para1 (lo byte)	Para1 (hi byte)	Para2 (lo byte)	Para2 (hi byte)
85 (dec)	9	0	0	0	1	XXX	185	200	0	220	0
		AR	G=0	LEN	=256			PIX1	=200	PIX2	=220

Byte13 Data	Byte14 Data	Byte15 Data	Byte16 Data	Byte17 Data	Byte18 Data	Byte19 Data	Byte20 Data	Byte21 Data	Byte22 Data	Byte23 Data	Byte24 Data
Para3	Para3	Para4	Para4	Para5	Para5	Para6	Para6	Para7	Para7	Para8	Para8
240	0	0	1	44	1	124	1	0	2	88	2
PIX3=240		PIX4	=256	PIX5	i=300	PIX6	=380	PIX7	=512	PIX8	=600

Byte25 Data	Byte26 Data	Byte27 Data	Byte28 Data	Byte29 Data	Byte30 Data	Byte31 Data	Byte32 Data	Byte33 Data	Byte34 Data	Byte35 Data	Byte36 Data
Para9	Para9	Para10	Para10	Para11	Para11	Para12	Para12	Para13	Para13	Para14	Para14
168	2	170	2	188	2	188	2	198	2	208	2
PIX9=680		PIX10	0=682	PIX1	1=700	PIX12	2=700	PIX13	3=710	PIX14	1=720

Byte37 Data	Byte38 Data	Byte39 Data	Byte40 Data	Byte41 Data	Byte42 Data	Byte43 Data	Byte44 Data	Byte45 Data	Byte46 Data	Byte47 Data	Byte48 Data
Para15	Para15	Para16	Para16	Para17	Para17	Para18	Para18	Para19	Para19	Para20	Para20
34	3	32	3	32	3	22	3	19	3	20	3
PIX15=802		PIX16	6=800	PIX1	7=800	PIX18	3=790	PIX19	9=787	PIX20	=788

•

•

Byte49 Data	Byte50 Data	Byte51 Data	Byte52 Data	Byte53 Data	Byte54 Data	Byte55 Data	Byte56 Data	Byte57 Data	Byte58 Data	Byte59 Data	Byte60 Data
Para251	Para251	Para252	Para252	Para253	Para253	Para254	Para254	Para255	Para255	Para256	Para256
124	1	44	1	0	1	240	0	220	0	200	0
PIX251=380		PIX25	2=300	PIX25	3=256	PIX25	4=240	PIX25	5=220	PIX25	6=200